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A METHODFOR TtlE&TlN3 H3URGLA5S PATTERNS

L. G. Marmgolin

Laurenm Livefmare Nation:ll Laboratory
Livermore, California 945[,U, {:SA

J. J. Pyun

Los Alamas Natlona; Lal..~?ato~y
Los Alamos, New Mt:xirc, 67545, USA

ABSTRACT

We have developed a new sr!vmo to identify and suppress
hourgla~s pa::wns. Th: sc’hen” nag been incorporated into a
Cwo-dimensional (;D) Lagrangliin hydrodynamic (hydro) code, tind
extensive calculaticms hav? been performed to demonstrate the
ef’rec:iveness Or our treatment.

Hourgiassing 1s a problem frequently encountered in
numerical simulations or rluid and solid dynamics. The
problem ar:ses because Cc!ftaln volume-preserving distortions
or cell shape produce no r~storlng rorces. The result is an
unrestricted drifting mode in the velocity field that leads to
severe diatortlons or Lhe corrrputatianal mesh. These distor-
tions cause large errors in the numerical approximations of
the equations cl’ motion. The drift may also allou adjacer:
vertices to get Iery C1OSC to each othm. This results in thv
Uomputatlonal tlmc step based on iI Cournnt stablllty condition

to become verv small, M!’ectlvely halting the calculation.

He describe a math~matlcal formdllsm that Idcntlfles and
Sr]e(srlvely damps the hourglass patterns. The damping 18 con-
structed to preserve the’ physic.+1 as~l~ets of’ th~ solutlon
while miilntalnlng .3 rt!asonabl(i mmputallonal mesh. lie f’urtller
descrltw the lr!lpiementatiun or our srhemr in a 2t’r hydro cod~,
and show the relative lmprsilvmn~’nt. in th~ rpsults or six dif-
ferent tmt pFOblf+MS that w! cdl~~lqtf~d,
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numerical simulations of’ fluid and solid dynamics. The
probler arisea because certain volume-preserving distortions
of cell shape produce no restoring forces. In a Lagrangian
calculation, where the cell ve~tlces move with the local

material velocity, the result is an unrestrained drifting mode
that leads to severe distortion of the me:n. The hourglassing
distortion in particula~ causes large e?rors in the numerical
approximations of’ spatial gradients in the equations of motion
(l). The dr~ft nay also allow adjacfmt vertices cn th~ mesh
to get very close to each oLher. This causes the computa-
tional time step based @n a CouFant stability condition to
become ve?y small, effectively halting the calculation.

An hourglass velceity patte?n is shown in Fis. l-a for a
regular mesh, where velocities are cal~ulated and stored at
ceil vertices. At a later time shown in Fig, l-b, the mesh
has deformed. However, the volume of each ceil is unchanged
in time. Consequently, the derlsity rea>lns constant in each
cell and no work has been done. Since pr’essure depends only
on density and internal energy, the pressure rleld is also un-
changed. Thus this velocity pa:Lern produces no restoring
forces &nd will persist, leading ultimately to a bowtied mesh.
On more irregular mesh, we can decompose a general velocity
field into a sum of’ independent patterns, one of which repre-
sents hourglasslng. The key feature of an hourglaas patter~
1s a global deformation that does not chance the volIMI@ of any
cell. He shall show that Lhe existence of such a pattern is a
topological property of the mesh - i.e., of cells havi:~ four
sides - and does not depend @n the details of the diff’erencing
schemb.

Physically, the continuum equations of motion &re w~ll-
posed, which means that the?e are exactly as many equations as
unknowns. In the process of discretization, this balanc@ has
been upset. On a quadrilateral cell, the degrees of freedom
exceed the constraints, In section 2, we review the modes of
❑otion of a 2D quadrilateral cell and ue ldentif’y the numbe?
of degrees of freedom associated with the motion of s,lch a

Fig. l(aI Anlnlllmllymwn~ularmrsh Fig.l(b) Tkmmcmr~hnlIlaicrlim6
wmhan htnqlm VCIOCWpalwrn Themolmnhat pduml no rtsmnnn

tbrcm.The mtmon*IIIconunuc un.
mlrmwdandwdl rvrnudl)csusf
bowtmdcdh



cell . Then we develop a simple mazhematica: formalism to
Adentify and selectively damp the hourglass!ng mcdes in sec-
tion 3. The particular fOrm of the filter depends on the
details of the diff’erencing scheme. In section 4 we exhibiL
one realization of the filter for a cammon choice of spatial
differenring (21. Our filt=r is local, explicit and
remarkably effective. In section 5 w disfiuss results of 81x
pairs of calculations. In each pair, one with the filter and
the other without, we shou that the mesh is considerably iw
proved in the filtered calcul.aLions resulting in considerably
reduced problem running times. Me aluo coxpare the physiral
solutions in ●a?h pair to show tha: the filter does not alter
the solution in any aspect that can be considered physical.

2. WDES OF CELL MOTION

We consider a typical quadr!latcral computational cell in
Fig. 2. In a two-dimensional geometry, such a cell hss ●ight
degrees of freedom, that 1s, a vertical velocity (V) and a
horizontal velocity (U) for each of the four vertlees.

Instead o!’ conalderlng the individual components, we can
conald~r pattwns made up of parts of’ the v810cltiom of
several wrtlces in Fig. 3. These patterns are Qqulvalent to
the degrees of freedom; again there me ●ight independmt pat-
ternn.

fnt (h) (1’)
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He identify the physical patterns in the following way.
Any physical motion that chang~s the shape or volurw o!’ a cell
8hould produce a restoring fo?ce. Conversely, any ceil deft?r-
mation that produces no r~storing r~Pcs 1s nonphysical.

Nonphysical cell deformatio~ is exemplified by the hourglaas-
ing.

Allowing for spatially co9st5nt straina in k Ceil, we can
identify six of the patterns with physi-. il modes of’ motion and
also with ❑a:hematic~,l objects. The physical modes are

one pattern of harlzontal translation
one pattern ol’ vertlca: translation
one paLtern cf rotation
one pattern of horizonLa: stra!n
one pattern of’ vert!cal strain
one pattern of shear strain

The restoring forces in a solid are S:?esgea that arise be-
cause o!’ atralns. The strains are the time integrals of
sLrain rates. The atraln rates ar~ just the spatial gradienta
nf velocity. “rhePe!’ore, we identify the aix degrees of
I“reedom with the six mathematical objects

U, V, autax, away, avlax, and avlay . (1?

39 MATHEMATICALF~RMALIS!! FOR THE FILTER

To const?’uct a mathemat.lcnl formaliam for the filter
that enpresaes these idea, we begin by conaldering an eiFht-
dimensicm: vector apacr’. The velocity components of’ the cell
vertlcea can be represented as vector in this apace

i m (~1, Uz, IJ3, lJ4, VI, v:, V3, V4) (2)

Th&” alx degrees of’ freedom can now be represented in terms of
vector o$eratora in this space. For example, if the uniform
motion U ef ● cell (the degree o!’ freedom ●asoclated horizon-
tal tranalatlonal invariance) id de~ined aa

(3)C - ,?5~ (U1+U2*U3*U4)

then a vector operator ~1 can be defined ao that

(4)

Here cl ■ .?5- (1 1, 1, 1, 0, 0, n, C,) and Lh@ dot repre-
sents the inner product of th~ ~~ectorai

The velocity gradients arm alao linear forma in the ver-
tex v-lorltlwa ar’ylcgn t?: e~re~sed as+ihner produW8. He
d~flne thv vector 1.1, L?, L?, LU, L5, ●nd Lb, by



awax - Z3 ● t

away = C5 ● i (5)

A apeclfled realization of the vectors will be given In
the example that follows in the next section. At this point,
iL ia important to realize that the vecLors depend only on the
particular form of the difference approximations used in the
code.

The Vectors cl through ;6 correspond to the physical de-
grees of freedom of th~ cell However, they do not canpletely
span the eight-dimensional vector space of possible mo cs of

icell ❑otion. There are Lwo ai!iitional vectors, L7 and L , re-
quired to span the apace. Thes~ are+easily con~tructed by
requiring them to orthogonal to t~e aet L1 through L6, and to
each other. The patterns L7 end Lll correspond to motions that
dd’orm the cell ●nd yet do not produce rest~ring forces. By
our definition, they are the nonphyalcal modes and in f’act
correspond to the hourglass patterns.

Me are now prepared to take Lhe fin~l step,+ By selec-
tively filtering the ❑odes proportional to L7 and L8, u. can
●liminate the hourglasslng without altering ny of tho forces

!in the calculation. Now the ●ight operators 1 through LB ●e
● linearly independent set, and so span the etght-dimensional
space of psaible velocity
space can be ●xpanded in a

. ; ■ ~(cj ■ ;) LJ

rJj-[(t7. ;)i7+

vector8m Also any vector in thla
complete set

j=l,2 ..6 (6)

(7)

Here, ●lpha represents Eh? fraction of the hourglassing that
ye filt+er frm the velocity field on each cycle. The vectors
L7 and L8 ●re chosen to have unit length.

AIQha la a dimensionless number that csn be thOUghG of ●s— ..
the ratio of the time step At to ● relaxation time tr. The
lnvtrse of alpha la the number of computational eyclos to
●chieva c~plete relaxation. Since ●ach vertex ia shared by
four cells, and the filter is appliad separately to ●ach of
thesa, complete relmxatlon in one cycle would mean choosing
elpha = .25. Larger Valuss thdn ,?5 would overcorrect
lend to lnatabllity. Howev@r thpre are other reasons
choose even smaller values of alpha.

In our analysis, we havr treated the rell ●s if it

iated in isolation !’rom the rest of’ the mesh. However

and
to

ex-
tha

●ffects of filter applied separately to each cell do overlap
since ●ach node la shared by four cells, Since the hour#lasm-
ing 1s a global pattern in which cell volumes do not ohange,
lt 10 clear that the uncw’mtrnin~d degrees of frecdum ●re not
two per cell, but only two for the entire mesh. Th@



superposition of filtering for each cell approximate a 8ingle
filter for the ●ntire ❑esh.

In prac~ice, the boundary and corner nodes are filtered
two times and one time respectively, whereas the filter 18 ap-
plied to the inner nodes four times. This filtering process
ia efficiently done by using a fully-vectorized DO loop which
sweeps the cells in the radial direction first and then
procaeds to the axial direction for a Cylindrlcdl geometry.

The ●ffectiveness of the filter is due to the way in
which corrections from the four cells sharing a node interact.
Qualitatively, they reinforce each other for the part of’ the
hourglaaslng that is global and tend to cancel each other for
other parts of the the global velocity field. To enhance this
cancellation, it ia important that alpha be chosen to be con-
stant over the entire mesh, rather than varying fras cell to
call , Also, we have tried allowing alpha to vary from cycle
to cyole, but find thin 18 not aa~f-ective, nor aa eaaily
implsmentmd, ●s simply fixing alpha for the entire calcula-
tion.

Because the filter Is only approximate, we should uae as
sm!ll a value of slpha ●s 1s sufficient to control the
hou?glassing deformation. A fu?l ●nswer to how small alpha
can be chosen would require a detailed undoratanding of the
source of the hourglasslng. Practically speaking, we have
found choosing alphm in the range

.01 < alpha < .05

works for most calculations.

4. A SPECIFIC RELIi!ATION OF THE FILTER

Consider a typical spatial diff’erenclng for a mesh o!’ ir-
regular quadrilateral cells in cylindrical gemmetry (2). For
tho translational terms we choeee

~/~ = (Ul*U2+U3+U4)/(Rl+R2+R3+R4)

i = 0.25 (V1+V2*V3+V4) (8)

For the spatial gradients, we usc

NJ/~r ■ [(U1-U3)(a?-zU) ~ (U2-U4)(z3-zl)]/2A

~U/~z = [(U1-U3)(r4-r2) + (U2-U4)(rl-r3)]/2A

~V/dr = [(vi-v3)(z2-z4) ~ (V~’-V~)(Z3-:l)I/2A



where 2A - (r2-r4)(z3-zl) + (r3-rl)(z4-z3) is twice the area
of the cell. By inspection, we write

~1 =0.25(1, 1, 1, 1, 0, 0, O,)

~2-O.25(0,0,0,0, 1, 1. 1, 1)

;3 = (z2-z4, 23-21, z4-z2, 21-23, 0, 0, 0, O) (IQ)

;4 = (0, 0, 0. 0, z2-z4, Z3-ZIm 24-22, 21-23)

C!i - (r4-r2, rl-r3, r2-r4, r+rl, O, 0, 0, O)

~6 = (O, O, 0, 0, r4-r2, rl-r3, r2-r4, r3-rl)

Then lt ~a easy to very that a (nonunique) choice for the
hourglass vectors is

t7-o.5(-1, 1,-1, 1,0,0,0,0)

ill- 0.5(0, o, 0, 0, -1, 1, -1, 1) (11)

5. COMPARISON AND DISCUSSION OF TEST PROBLEMS

In verifying the effectiveness of aur hourglass filter,
we have run more than one hundred test problems with slid
tiithOUL the fiter. We will discuss the results of 81x typical
problcas in this section.

Test problem number one consist of’ a steel ball, and a
concentric steel shell with a vacuum between them. Initally
the inner ball has radius 0.5 cm. The shell has an inner
radius of 1,0 cm and an outer radius of 2.0 em. The ball is
stationary and the shell is imploded spherically with a oon-
stalit velocity of 100 cmlmam The shell collide? with the ball
at approximately 0.0027 ms. Then the ball and shell rebound
together as shown in Fig. 4. The interface b?tween the ball
and shell is treated as a free slip surface after collision.
Figure 4-a shows that the hourglass filter prevents appreci-
able hourglassing and also stabilizes the sltp interface.
Figure 4-b, calculated without the filter, shows classical
hourglaas patterna. Free slip lnt?r!’aces seem to be espe-
cially susc~ptiLle to hourgliisslng, probably because the nodes
on the interface have feuer constraints.

The filtered calculation better preserves the apherlcal
symmetry expected in the calculation. However, thQ average

redius of’ each sphere of nodeo (represcntlng Laflrangian points
lr. the material) is identical in both calculations, supporting
our claim that the hour-glass filLer does not alter’ the physl-
ca] aspects of’ the solution.
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Test problem number two consists of three concentric
steel shells initially in contact with each other. A weak
shock of about 3 Kbars 1s generated in the middle shell along
a 45 degree line from the polar (vertical) axis. The shock
moves azlmuthally toward the equator where it is reflected at
about 0.02 ma. The two interfaces between shells are treated
as free slip surfaces. Figure 5-a shows that the filter
eliminates the hourglass patterns. The position of’ the intels-
faces is identical in both calculations.
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Teat problem number three ia a shaped change with a cop-
per liner. The shaped charge ia a cylinder with an outer
radius of 7 cm and with a height of 24 cm. The average thick-
ness of the copper linear ia 0.5 cm and its inner radius 18
approximately 5.5 cm. The ●xplosive is detonated at time
zero. Figure 6 ahowe part of the copper liner being ac-
celerated by the explosive at 0.045 ❑s. Figure 6-b shows
hourglama patterns along the polar axia, and the same time a
bowtied ❑esh in the tall ~ection of the liner. There are no
bowtiea and no hourglasa patterns in the filtered calculation
ahoun in Fig. 6-a.
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Test problem number four consists of three coaxial
cylindern. The upper and lower cylinders are identical. They
are made OF steel, 0.6 crn in radius and 0.5 cm thick.
Sandwiched between them la a smaller cylinder made of copper.
The copper cylinder is 0.1 cm both in radius and thickness.
Tha steel cylinders move axially toward each other with a
relative velocity of 0.5 cm/ma. The copper disk is squeezed
and extrudes radially into the air gap. Hourglaaa patterns
are prominently vlelble along an interface between the copper
disk and the air gap in Fig. 7-b. No hourglaaa pattorna are
❑anifest in Fig. 7-a when the filter la employed.
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Test problem number five simulates the impact of’ a solid
steel ball with alluvium. Alluvium ia a relatively weak
geologic material, The alluvium is initially a (nearl Y) in-
f’inite plane representing a river bed. The steel ball has an
initial radius of’ 5 cm. The steel ball impacts the alluvium
vertically wiLh a velocity of 500 cm/ms. Figure 8 shows the
penetration of the ball into the alluvium. No conspicuous
hourglasa patterns are visible even in Fig. 8-b. Houever, the
hourglass filter has clearly eliminated a mesk, instability
along the 811P line in Fig. 8-a.
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The final test problem, number six, shows a 8teel dlak
with rigidly constrained boundaries. A strong plane shock
(approximately 8 F!bara) is generated on the top boundary and
❑eves vertically downward to the bottom boundary where It. iS
reflected. In Fig. 9-b, the unfiltered calculation shows ex_
tenaive mesh distortion due to hourglaasing. The filtered
calculation in Fig. 9-a exhiblta a clean and regu:ar ❑esh,
maintaining the expected physical symmetry of a the material
motion.
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None of the test problmns in this section hav~ analytlc
aolutlons. Howe”~er, we have rompared physical aspects of
solutions between the fllt@r~cl find th~ unfiltered calcula-
tions. Theoe aspects include the poaltlon of material
Interfacc?a, shock velocltlos and tho Jumps in physlral varl-
ablea ao~osn the ahooka, The results of these comparisons
lndlcat~ that the hourglaasing rlltcr do-s not ch:lngn th~
physcnl solution if tne value of alpha the dimenalonl-am rtitlo
of time steb At to rolaxntlon time tr - in lona thnn O.Oh,



7% percent. This saving is aa30ciated with the higher time
step that is allowed with a more regular mesh. For example,
485o cyclam are required to run teat problem number one to m
time of’ 0.0055 ❑s in tile unfiltered C:ilculritlon khereas only
950 are required when the rilter iB used.

c.

1.

2.

Table 1

Canparixm of Running CPU (central processor unit)
Time (s) In Cray X-HP Computer

Test Problem CPU Time or (Cycles) CPU Time
Problem Time (ma) with without Saving
Number filter filter (percent)

1 0.0055 41(9!)0) 163(4850) 75
2 0.1 84(721) 84(721 ) o
3 0,0507 208(1660) 281(32250) 26
4 0.03 293(2299) 324 ( 2580) 10
5 0.005 161(336) 534(1849) 70
b 0,023 357(!500) 500(7647) 29
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